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A TOXONOMY OF SOFTWARE DECEPTIVE INTERPRETATION

IN THE LINUX OPERATING SYSTEM

Abstract

Rootkits are malicious tools installed on compromised computer systems that help
intruders take advantage of and maintain unauthorized access. Modem rootkits routinely
employ deceptive interpretation to evade detection. This allows them to remain hidden
and operational for extended periods of time, drastically prolonging and escalating the
damage from the system compromise. State-of-the-art tools for detecting these
sophisticated rootkits are haphazard and inadequate. Their signature-based approaches
are unable to cope with novel or individualized rootkits and they will not scale well as
rootkits proliferate both in numbers and sophistication. This paper investigates the
concept of deceptive interpretation in order to explore high assurance approaches to
detect rootkits. A taxonomy was developed through a systematic analysis of the Linux
operating system that enumerates all possible mechanisms of performing software
deceptive interpretation. Many novel mechanisms, not yet implemented in published
rootkits, were discovered and included in the taxonomy. Categorization was based on the
system objects that need to be modified for the deceptive interpretation mechanism. As a
result, detectors that target the set of system objects associated with a category will be
able to detect all deceptive interpreters in that category including previously unknown
implementations. This work can serve as the basis for developing an alternative to the
signature-based approach with the capability to provide categorical protection against
deceptive interpreters and rootkits.

Manuscript approved October 4, 2004.



1. Introduction

Computer systems are constantly under the threat of intrusion. This threat is frequently
realized especially in commodity products. No matter how tightly a computer is locked
down, there is always at least one flaw that attackers can use to break in. In 2003 alone,
137,529 incidents were reported to CERT/CC and the number is growing exponentially
each year dating back to 1990 [1]. However, intrusion is only the beginning of a
compromise. After the attackers gain root access to the system, they can install rootkits
containing malicious software including backdoors, sniffers, and tools to hide their
presence on the system. These tools will run with root privilege and have the ability to
control the system completely. However, backdoors and sniffers tend to have rather large
signatures that could be easily detected. What makes rootkits exceptionally dangerous is
their ability to hide from detection through deceptive interpretation. Published and
widely available rootkits routinely contain code that actively hides their. Deceptive
interpretation can fool both automated tools and human system administrators into
thinking their systems are safe. They enable a rootkit and its malicious payload to
operate for an extended period of time thus drastically prolonging the system compromise
and escalating the damage.

Currently, nothing is available for Linux systems that could provide a high level of
protection against deceptive interpretation. Rootkits and the tools for detecting them are
in an arms race. Detection tools evolve only in response to developments in the specific
rootkits they need to detect. In such an arms race, the attacker has the initiative and
rootkit designers are able to remain a step ahead of the detectors. As a result, new
rootkits employing methods never before seen will always evade detection. In fact, most
new rootkits are developed specifically to defeat detection tools available at the time.
The best system administrators can possibly do with the means publicly available to them
is to say their systems do not contain specific rootkits within the scope of their detection
tools. They have no assurance against new rootkits or custom rootkits created by
individual hackers. This means a single successful intrusion could result in a system
becoming compromised indefinitely. With the suitable rootkit installed, there is nothing
the system administrator can do on a running system to detect the compromise or the
initial intrusion. This situation is totally unacceptable, especially for critical military
computer systems.

This paper presents a complete taxonomy of deceptive interpretation in the Linux
operating system. This work contributes to developing an alternative approach to detect
deceptive interpretation and rootkits. Instead of scanning for the presence of specific
rootkits through signatures, the absence of all rootkits can be confirmed by verifying that
malicious modifications to the system for deceptive interpretation have not been made.
This integrity-verification approach, based on a comprehensive taxonomy, can provide
categorical evidence regarding all possible deceptive interpreters and lead to a much
higher level of assurance that systems are not tainted by deceptive interpretation and
rootkits.
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The following sections are organized as follows. Section 2 provides an overview of
rootkits in general. Section 3 focuses on the deceptive interpreter aspect of rootkits and
defines the concept of deceptive interpretation. Section 4 outlines specifics of the Linux
operating system design that make it susceptible to rootkits. Section 5 presents the
taxonomy of deceptive interpreters and discusses each category in detail. Section 6
presents a survey of several existing rootkits and their place within the taxonomy.
Sections 7 and 8 describe some of the countermeasures currently available against
rootkits, along with their limitations. Section 9 discusses the implications of the
taxonomy and how it could be used to create detectors for deceptive interpretation and
rootkits that are superior to what is currently available.
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2. Rootkits

A clear and consistent definition of a rootkit is lacking in current computer security
literature. For the purpose of this paper, a rootkit is defined as a toolkit installed on a
root-compromised machine that exhibits at least one of the following behaviors:

1. Performs automated malicious activities. This is a wide category that includes
malicious software such as network sniffers, keystroke loggers, worms and
viruses.

2. Allows unauthorized access to the system in the future. This would include the
installation of backdoors, modification of login databases and disabling of
security services that perform access control.

3. Prevents the detection of the intrusion. This is the part of a rootkit that aims to
sanitize the system and erase evidence of the initial break-in.

4. Prevents detection of the rootkit. This component hides the presence of the
rootkit itself on the system and enables it to function for an extended period of
time.

The first two categories of behaviors can be thought of as the payloads of the rootkit.
They are the components that actually take advantage of the system compromise to
perform malicious tasks. The last two categories are intended to keep the payloads
operational for extended periods of time by evading detection. The fourth category,
preventing the detection of the rootkit itself, is usually implemented through a deceptive
interpreter.

It is important to note that rootkits are not exploits. Rootkits are not used for obtaining
root access to a host, rather they are used to maintain and take advantage of such access.
They are installed only after the system is already compromised. There are a number of
ways to gain unauthorized root access on a system. Prepackaged exploits for root
privilege are widely available on the web for Linux systems [2, 3]. Keeping the
operating system and applications up to date in terms of security patches will defeat many
exploits. However, this is rarely the case in the real world and systems remain vulnerable.
Even if systems are fully patched, they will still be vulnerable to 0-day attacks that
exploit brand new vulnerabilities [4]. Root passwords can also be stolen through social
engineering, or through attacks such as network sniffers or keystroke loggers. Moreover,
the attack could originate from an insider with legitimate access to the system and a root
account. It must be recognized that system compromises are impossible to prevent
completely and there will always be opportunities to install rootkits.

The first program that could be classified as a rootkit appeared more than a decade ago in
1994 [5]. The CERT advisory described a malicious program installed on root
compromised machines that collected host and user authentication information by
sniffing traffic on the local area network. These first rootkits only contained payloads.
They made no attempts to provide for future access, or to hide the system compromise.
Subsequent rootkits included Trojan horse login programs that provided backdoors for
attackers to revisit previously compromised systems. Soon after, rootkits evolved to
include features that made them truly dangerous - the ability to hide.
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The first Linux rootkits appeared back in 1994, the same year the operating system itself
was released [6]. The first complete Linux rootkit, Linux Rootkit II version 1.0, was
released in 1996 [6]. It exhibited all four of the defining behaviors of rootkits. It had a
network packet sniffer, a login Trojan that granted root privileges to anyone presenting a
magic password, a log sanitizer to erase traces of the initial intrusion, and a number of
binary Trojan horses that actively concealed the presence of the rootkit on a system.

Since then, advances in rootkit design have moved them into the kernel. Instead of
simply altering the executable binaries, modem rootkits are able to subvert the underlying
operating system on which all user space programs rely. For example, a rootkit could
alter the system calls related to file access and hide specific files from all user space
programs. As a consequence, rootkits became much harder to detect. Since the binaries
are not modified, checking the integrity of these files is useless. Furthermore, placing
rootkits in kernel space makes them much more powerful. They are now able to interact
with the system at a low level with full privilege and bypass any restrictions put in place
by the operating system.

The open source nature of the Linux operating system makes it especially susceptible to
kernel rootkit attacks. Assuming the source code for proprietary closed source operating
systems such as Windows is unavailable, rootkit writers have to guess at the inner
workings of the system. This is security through obscurity and not a robust or desirable
protection scheme. Closed source operating systems are likely to have many more
vulnerabilities than Linux. In the practical sense, however, this restriction on information
means fewer people get to know about vulnerabilities directly from the source-code,
which does make writing rootkits for such platforms much harder. Rootkits in general do
not rely on software bugs, but rather take advantage of the particular way the system is
designed to function. Armed with the source code, authors of Linux rootkits can
systematically analyze the operating system to find ways of exploiting it.

The expertise needed to write rootkits is well within reach of the average programmer
familiar with Linux and operating systems programming. A Black Hat seminar titled
"Aspects of Offensive Rootkit Technology" claims to be able to train anyone with
rudimentary programming skills to create their own rootkits that perform deceptive
interpretation from scratch in only two days [7]. Information and tutorials on writing
rootkits are widely available on the internet to anyone [8]. The number of people capable
of writing rootkits is significant. Rootkits are relatively small programs that rarely
exceed several hundred lines. The actual meat of a rootkit, the key concept that allows it
to perform deceptive interpretation, is usually coded in a few dozen lines. Understanding
these few lines of code will allow other programmers to create new rootkits using the
same mechanism. They can incorporate new capabilities to suit a particular need, or
make general refinements for a better rootkit. Rootkit development is a highly modular
and additive process. Components of rootkits rarely need to interact with each other.
They are more like separate tools in the same toolkit rather than a tightly coupled
program. Breakthroughs in the field can be quickly incorporated into rootkits with little
or no modification to existing components.
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For those who are incapable or unwilling to write their own rootkits, prepackaged ones
are also widely available on the Internet [2, 9]. Many of these packages are sophisticated,
feature rich, automated, and user friendly with an easy-to-understand interface.
Technical skill is not required to actually deploy these rootkits. For the most part, they
can be compiled out of the box and work on the target system without any modification.

The danger of rootkits lies in their ability to stay hidden and operate for extended periods
of time. Modem rootkits employ sophisticated techniques to conceal their presence on
the host. They actively try to cover up their tracks by concealing files, network
connections and running processes, wiping logs, interfering with security processes
running on the host, hiding from virus scanners and intrusion detection systems, and
preventing the human system administrator from noticing their presence. The key to their
ability to evade detection is deceptive interpretation. That is the aspect of rootkits this
paper will focus on.
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3. Deceptive Interpretation

A deceptive interpreter is a malicious agent on a system that is capable of observing and
changing the results of computations according to a predefined policy. Deceptive
interpreters are able to change one or more of the following in order to enforce their
policies:

1. The inputs for the computation
2. The sequence of operations executed
3. The information returned by the computation

A necessary policy for all deceptive interpreters is that they themselves must remain
hidden. If the deceptive interpreter itself is detected, the compromise of the system is
automatically revealed. A deceptive interpreter is defeated as soon as it is detected. In
order to hide the system compromise, the originator of the computation must be misled
without realizing it.

In order to evade detection, rootkits must obscure the true state of the host from any
program or human operator attempting to ascertain its integrity. The only way to do so is
through some form of deceptive interpretation. It could be as simple as a Trojan binary
that produces the wrong result, or as complex as a full fledged system reference monitor
that mediates all operations. The targets of deceptive interpretation include anything that
seeks to reveal the presence of the rootkit.

The coverage of a deceptive interpreter refers to the set of operations considered safe for
the deceptive interpreter. No sequence of operations can be constructed entirely from the
covered set of operations such that upon execution, the policy of the deceptive interpreter
will be violated. The coverage of a deceptive interpreter is defined by satisfaction of
three requirements on the set of covered operations.

1. Always invoked. The deceptive interpreter must mediate all operations relevant
to its policy. No operation or sequence of operations in the covered set should be
able to bypass deceptive interpretation.

2. Tamperproof. The deceptive interpreter must never act in a way that contradicts
the defined policy in response to operations in the covered set. No operation or
sequence of operations should cause the deceptive interpreter to malfunction or
fail I

3. Undetectable. The deceptive interpreter itself must be undetectable by operations
in the covered set. This requirement includes both direct detection of the
deceptive interpreter and indirect detection such as when the deceptive interpreter
returns unexpected results or when it crashes the system.

The only operations that could potentially defeat the deceptive interpreter are ones that
are outside its coverage. This means first, operations that are irrelevant to the policy of
the deceptive interpreter are in the covered set. For example, if the policy only pertains
to hiding files, operations that are irrelevant to files will be part of the covered set by
default. Second, the sophistication of the deceptive interpreter is determined by its
coverage. For example, a Trojan binary file for the ls command can successfully mislead
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operations that rely on that binary. Operations that do not rely on the Is command such as
ones that use the cat command will fall outside of the coverage of that deceptive
interpreter. On the other hand, if the deceptive interpreter is in the kernel and is able to
mediate all file operations, then the coverage of the interpreter would include all file
operations in user space. However, certain low level operations will be able to bypass the
kernel and they would be considered outside the coverage of that deceptive interpreter.

These requirements are similar to those of a reference monitor in the context of access
control [10, 11]. The difference is that reference monitors are security mechanisms that
enforce legitimate policies on the system. Deceptive interpreters on the other hand,
enforce malicious policies to the detriment of the system. Another difference is that the
deceptive interpreter must not be detected. Deceptive interpreters cannot reveal their
presence in the system and must provide responses that appear legitimate.

A deceptive interpreter is said to have complete coverage if its set of covered operations
encompasses all possible operations on the system. In practice, deceptive interpreters
only cover a handful of operations. The set of all possible operations on a system would
include reboots from secure read-only media, or even a clean reinstallation of the
operating system. It is unfathomable that a rootkit could survive such operations.
Deceptive interpreters are usually not complete boxes, but rather intermittent walls that
seek to enforce their own policies on a small specific set of operations. This level of
coverage is usually sufficient for in the context of rootkits.

The goal of the deceptive interpreter as a part of a rootkit is to hide the presence of the
rootkit on the host system. This implies hiding objects and behaviors that could signal its
presence, specifically files, network connections, running processes, and the deceptive
interpreter itself. Covered operations vary widely depending on the sophistication of the
rootkit. They could range from covering only a few commonly used system commands
such as Is, ps, and netstat, to potentially covering all software operations.

Currently, publicly available rootkits are very effective in terms of the first two
requirements for covered operations - always invoked and tamperproof. Modem
techniques place deceptive interpreters inside the kernel enabling them to take almost
complete control of the host system. However, most of them are weak in terms of the
third requirement and remain easily detectable. This is partly due to the culture of the
rootkit authors. Most rootkit descriptions that are published include a chapter that
explains how the rootkit could be detected on affected systems. Most mechanisms for
deceptive interpretation can be detected through relatively intuitive and straightforward
methods. For example, if a rootkit creates Trojan binaries, the obvious way of detecting
this is to check the integrity of binary files.

On the other hand, highly stealthy rootkits are simply not necessary in the present
computer security environment. The relatively unsophisticated methods currently
employed in hiding the rootkit are sufficient for deployment on most systems. While
there are obvious ways of detecting deceptive interpretation, those checks are rarely
performed. System administrators are for the most part unaware of the problem of
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rootkits and deceptive interpretation. They concentrate their efforts on hardening their
systems against intrusions and take it for granted that compromises have not already
occurred [121. Many system administrators only start to suspect the presence of rootkits
when their machines start acting erratically and crashing. However, this only happens in
situations when the rootkit is broken and malfunctioning. Properly functioning rootkits
do not significantly affect the normal operation of the host and system administrators
would not have any hints that their machines are compromised.

As the threat of rootkits becomes better known, more and more system administrators
will include checks for rootkits as part of their routine system maintenance. While this is
a good thing in general, it will invariably cause rootkit writers to increase the
sophistication of their deceptive interpreters to avoid detection. The technical know-how
to create much better deceptive interpreters already exists. The most popular rootkits
available currently are generations behind the most advanced mechanisms of deceptive
interpretation proposed in papers. Unpublished rootkits that are extremely stealthy could
already be in use by the Black Hat community.

The fundamental consequence of deceptive interpretation is that the host can no longer be
trusted to inspect itself. If the detection system falls inside the coverage of the deceptive
interpreter, it will not be able to detect the presence of the rootkit. The potential coverage
of deceptive interpreters in general is impossible to predict. It is not unreasonable to
assume the coverage could encompass the software operations of the detector.

All software checks could be defeated by a sufficiently advanced deceptive interpreter.
Software integrity checkers operate on systems that could be tainted by the very
deceptive interpreters they are trying to detect. It is impossible with current technology
for software code to self-validate or communicate directly with the processor to ascertain
the true state of the system. No sequence of operations could be executed that can
categorically detect the presence of a deceptive interpreter. At the lowest level, if the
deceptive interpreter has full control and complete knowledge of the system, it could
simply not execute code that could violate its policy and return false results generated to
appear legitimate. This basic strategy comes from Turing's proof of the halting problem
[13]. The deceptive interpreter can identify the points in the software that contain
decisions or results that violate its policy and act to neutralize them. This is indeed very
hard to do. It would require intimate knowledge of the system and the security
mechanisms protecting it. However, highly critical systems, especially those in the
military, do not have the luxury of only dealing with probable scenarios. They need to
take the hardest attacker approach in evaluating system security and take into account all
possible attacks and develop safeguards against them.

The concept of deceptive interpretation must be examined from both the practical and
theoretical point of view. The current signature-based approaches for detecting rootkits
are haphazard and will not apply to more sophisticated forms of deceptive interpretation.
Systematic understanding of deceptive interpretation is essential in creating effective
countermeasures to the threat of rootkits.
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The taxonomy presented in this paper will deal exclusively with software deceptive
interpreters. While it is possible to perform deceptive interpretation directly on hardware,
the opportunity to do so is very limited. For the most part, hardware is immutable.
Commands are executed by hardwired circuits that cannot be changed. Attackers would
need to physically replace the hardware with a malicious duplicate in order to perform
deceptive interpretation. Some hardware devices could indeed be updated through
software means to alter their behavior. For example, microcode on both Intel and AMD
processors can be patched through software updates [14, 15]. Theoretically, CPU
instructions could be altered directly to perform deceptive interpretation. Deceptive
interpreters located in the CPU would be very powerful and extremely hard to detect. In
reality, however, the software patch is only capable of making small changes to the CPU
microcode. It is certainly not capable of creating a meaningful deceptive interpreter.
While it is important to recognize the possibility of hardware based deceptive interpreters,
they are relatively scarce in the context of rootkits.
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4. Overview of the Linux Operating System

Linux provides a distinction between operations in Kernel space and User space. Kernel
space is reserved for the operating system. It has the highest level of privilege and can
directly access hardware devices and memory. Operations in user mode are restricted.
They are prohibited from accessing the kernel and the underlying system hardware.
System calls provide the interface for user space processes to interact with the kernel and
utilize kernel services. Execution control is transferred from user space to kernel space
through interrupts. They could either be hardware interrupts generated by hardware
devices, or software interrupts generated by running processes such as when making a
system call.

In the case of a hardware interrupt, the path of execution proceeds as follows in the Intel
x86 architecture. The user process is halted and control is passed into the kernel space.
The processor locates the interrupt descriptor table (IDT) which points to the interrupt
handler routine. After the interrupt handler routine completes, execution is returned to
user space, either to the same process that was running before the interrupt, or to a
completely different process depending on the specific interrupt.

Program
Execution

Hardware InteruptProgram

-IDT Pointer IDT Interrupt

Kernel Space

User Space

Figure 1: Hardware interrupt execution path

System calls are triggered by software interrupts generated by the currently executing
user space process. From there, the execution path proceeds in much the same way as
hardware interrupts. The interrupt handler routine in this case calls the system call

II



handler routine. The system call is parsed and the appropriate system call routine is
called by consulting the system call table. The system call routine could in turn call
helper routines which may be part of another system interface. After completion of the
system call function, execution is returned to the user space process.

Program

Execution

Program
Execution

Software
Interrupt

IDT Pointer IDT Call Call R ui eTable Routine Ruie

Kernel Space

User Space

Figure 2: System call execution path

This layered architecture and modular design of the Linux operating system allows
individual components to be modified without affecting the rest of the system. This is a
desirable trait from a software engineering perspective. However, it also simplifies the
creation of deceptive interpreters. They can target a single component and have the
modified results propagate to subsequent layers.
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implementation details of the actual rootkits. It should also work against new rootkits
never before seen. This is hardly possible to achieve through signature-based approaches.
The assumptions made by the detector must be reasonable and deemed acceptable by the
operator of the system. Steps should be taken to ensure the assumptions are indeed valid.

User space deceptive interpreters target components that reside in user space. Kernel
space deceptive interpreters target components in kernel space. Global deceptive
interpreters affect components in both user and kernel space. The following sections will
describe each category of deceptive interpretation in more detail.

5.1. User Space Deceptive Interpreters

Deceptive interpretation can be performed in user mode by statically modifying the
binary and data files for applications and libraries. Trojan files would remain functional
in appearance, but they are able to return incorrect results according to the policy of the
deceptive interpreter. For example, a Trojan horse ls binary file could be programmed
to never display files belonging to the rootkit. System administrators using this command
to check their system will not be able to detect those files. Data files could also be used
to perform deceptive interpretation. For example, the mapping between hostnames and
IP addresses are stored in a data file. Modification of that file will allow the deceptive
interpreter to redirect network traffic for operations that refer to hostnames.

User space deceptive interpreters are relatively unsophisticated and have been more
commonly used in early rootkits. The coverage is rather narrow and limited to only those
operations that directly rely on the modified files. However, most people take commands
like ls for granted. A properly constructed user space deceptive interpreter would
appear to be completely normal to the user and would not arouse suspicion. Special file
integrity checkers such as Tripwire [16] and AIDE [17] are necessary for detection of this
type of deceptive interpretation.

It is also important to note that Trojan horse files do not necessarily have to physically
replace the original files. The deceptive interpreter could simply change the
environmental variables so that execution is redirected to the Trojan horse file at the
system level [18, 19]. For example, the path definitions could be modified so that when
the user types 1 s on the command prompt, an entirely different 1 s command is executed.
In this case, the original binary would remain unmodified and file integrity checkers
would not detect the deceptive interpreter. It is not only necessary to verify the integrity
of the files themselves, but also the integrity of everything they depend on, such as
environment variables, system configuration, and shell functionalities.

5.2. Kernel Space Deceptive Interpreters

Operations in the kernel mode function with full privilege including direct access to
hardware and memory. As a result, deceptive interpreters residing in kernel space are
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much more powerful. They have the potential to completely control the affected system
by mediating all system services. Furthermore, access restrictions do not apply to
operations in kernel space. User processes are isolated from each other through various
protection mechanisms. However, the kernel is assumed to be trusted. There are no
mechanisms protecting processes in either user or kernel space from malicious
intervention by a component of the kernel.

A kernel space rootkits must first find ways to migrate to kernel space in order to operate.
One way to do this is to take advantage of the loadable kernel module (LKM) feature of
the Linux operating system. This feature is used for adding modules such as device
drivers into the kernel at runtime without recompiling. However, having the LKM
feature also makes rootkit injection much easier. Rootkits can simply be loaded as a
kernel module enabling them to gain entry into kernel space. Another way to inject
rootkits into the kernel is to write directly to memory. The /dev/kmem interface is a
special device that can provide direct access to the memory including regions occupied
by the running kernel. Users or programs with root privilege can perform write
operations on it. Deceptive interpreters can alter the kernel by overwriting the kernel
image in memory through this interface. These two methods utilize features provided by
the Linux operating system. They are the easiest and by far the most common methods
used by rootkits to enter kernel space. Other methods include modification of the kernel
image on disk. Rootkit code can be injected into the disk image of the kernel and can
become operational after the system reboots. Exploits can also target kernel code directly.
Buffer overflow attacks against parts of the kernel such as device drivers will result in
execution of malicious code in kernel space.

Kernel space deceptive interpreters could be divided into two categories. Interface
deceptive interpreters make up the first category. They operate by intercepting and
hijacking functions associated with interfaces. They are passive in nature. Once installed,
their malicious code must wait to be invoked by some other component of the system.
Active deceptive interpreters make up the second category. They do not rely on
interfaces but rather actively monitor the system to perform deceptive interpretation.

5.2.1. Interface Deceptive Interpreters

The Linux operating system contains several layers of abstraction and system interfaces.
Interface deceptive interpreters operate by hooking interface functions and redirecting
them to execute malicious code. The most important interface is the system call interface
between user and kernel space. As a result, the vast majority of deceptive interpreters in
published rootkits are system call deceptive interpreters. However, other system
interfaces do exist and could also become targets of deceptive interpretation. Two of
these other interfaces are the interrupts interface and the virtual file system interface.

5.2.1.1. System Call Deceptive Interpreters
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Deceptive interpretation can be performed anywhere along the execution path. A rootkit
could convince programs that one plus one equals three. Such computations reside
exclusively in user space. Therefore, the deceptive interpreter for them would also be in
user space. However, rootkits are more interested in hiding files, processes and network
connections. Operations relating to these objects require kernel services that user space
applications must obtain through the system call interface. Hijack of system call
functions would allow the deceptive interpreter to mediate all user space access to those
objects. Consequently, deceptive interpreters in most modem rootkits are system call
deceptive interpreters.

There are four places where system call deceptive interpreters can place a hook for
intercepting system calls.

5.2.1.1.1. System Call Table

The system call table is a linear array of pointers to system call routines. It basically
serves to map system call numbers to the routine entry points in memory. Modification
of this table will change the mapping and enable rootkits to point specific system calls to
their own Trojan system call routines.

System Call Table sysforkO I System Call Table sysforkO

FAKE-readO {

Figure 4: System Call Table Figure 5: Hijacked System Call Table

This is the earliest method published for intercepting system calls described in 1997 [20].
Detection of this deceptive interpreter requires checking the integrity of the system call
table. The system call table is a static data structure. It should not change during normal
operations of the system and any modification would indicate the presence of a rootkit.
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5.2.1.1.2. System Call Routines

Deceptive interpreters can also tamper with the system call routines themselves. This
could involve overwriting the routine code segment in memory with a Trojan version, or
overwriting only a portion of the routine to perform a jump to a Trojan routine that
performs deceptive interpretation.

System Call Table System Call Table sysfork( I

2 .I. 2
3 Isys-readO{ 3 ]• [sys-readO{
4 l NOP 4 [ JUMP

NOP ...

FAKEreadO

}

Figure 6: Modified system call routine Figure 7: Redirected system call routine

The latter method was published in 1998 [21-23]. The main advantage of this method is
that it is much stealthier. The system call table is not modified so it cannot be detected
by system call table integrity checks. Detection of this type of deceptive interpreter
requires verification of all critical system call routines. The published implementation
places the jump at the beginning of the routine. However, it is theoretically possible to
perform the jump anywhere from the beginning of the routine to right before the return
statement. Therefore, it is necessary to verify the integrity of the entire routine code body.
This is much harder than simply verifying the integrity of the system call table with a
length of only 1024 bytes. Another problem brought forth by this method is that system
call routines often call other kernel functions in the course of their execution. In order to
completely ensure that a system call has not been redirected, the entire tree encompassing
all possible execution paths must be verified. In an experiment tracing through system
call execution paths, it was shown that an overwhelming majority of the more than 2000
exported functions in the Linux kernel are either directly or indirectly called by system
call routines. Verification of all the code that could potentially execute in the course of
performing system calls is not a trivial endeavor. It would be a simpler solution to just
verify the integrity of the all kernel code segments in memory.
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5.2.1.1.3. Interrupt Descriptor Table

The IDT is an array of interrupt descriptors that contains pointers to interrupt handling
routines. Interrupt 0x80 is the software interrupt used for system calls. Modification of
this entry could redirect system calls to a Trojan system call table which could in turn
point to Trojan system call routines.

Replacement
Interrupt Descriptor Table System Call Table

Ox7F 2 Replacement
W8 3 System Call Routines

0x81 4

System Call Table

1

2

3
4

Figure 8: System call table through modification of the IDT

This method was first described in 2002 [24]. It involves the creation of a new system
call table. The original system call table and system call routines would remain intact
without modification and pass scans by system integrity checkers. Detection of the
deceptive interpreter requires looking specifically at the IDT at interrupt 0x80 to see that
a different system call table is being used. This is not hard to do. However, many of the
rootkit detectors at that time and even today still do not perform this check.

5.2.1.1.4. Interrupt Descriptor Table Pointer

The initial stages of interrupt handling are performed exclusively by hardware. The IDT
marks the entry into the software realm. For most system architectures, the location of
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the IDT is stored in a CPU register. It is possible to change the content of that register to
point to an entirely different IDT.

Main Memory

CPU Replacement

Interrupt Descriptor Table

IDT
Pointer_____ _ ___

Ox7F Replacement

Ox8O [Zi System Call Table and
Ox81 System Call Routines

Interrupt Descriptor Table

Ox7F

0x80

0x81

Figure 9: Replacement Interrupt Descriptor Table

This method of performing deceptive interpretation has not yet been published. A
prototype implementation was created as part of this project. It involved creating
duplicates for the IDT as well as the system call table. This method would not have a
signature in memory or secondary storage whatsoever. The original data structures and
routines are untouched and scans aimed at them would not reveal the presence of the
deceptive interpreter. The interrupt descriptor and system call tables do not have any
specific format or header requirements that could be used as a signature to specifically
identify them. The duplicate structures could be easily disguised [25]. The only way to
defeat this deceptive interpreter is to query the CPU itself for the location of the IDT to
ensure the correct one is being used. The actual implementation of this check is
architecture specific. However, all interrupt driven architectures store the IDT pointer in
CPU registers.
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5.2.1.1.5. System Call Deceptive Interpreters Summary

A shortcoming of system call deceptive interpreters in general is that their coverage is
limited to user space. Code executing in kernel space can call kernel functions directly
without having to go through the system call table. As a result, kernel space operations
are inherently outside the coverage of system call deceptive interpreters. In reality, this is
not a serious shortcoming. The targets of deceptive interpreters for the most part lie in
user space. However, hijacking general kernel functions instead of specific system call
functions could easily extend the coverage of a deceptive interpreter into kernel space.
Furthermore, some kernel functions may serve as nice bottle-necks for certain
functionalities. The deceptive interpreter could hijack a single kernel function instead of
multiple system call routines and thus reduce its signature.

5.2.1.2. Interrupt Interface Deceptive Interpreters

The interrupt interface serves as the sole entry point into the kernel. All software
interrupts as well as hardware interrupts are first processed by this interface. The
potential coverage of interrupt interface deceptive interpreters is greater than that of
system call deceptive interpreters.

No implementations of this mechanism have been published thus far. System call
deceptive interpreters described previously in sections 5.2.1.1.3 and 5.2.1.1.4 that tamper
with the IDT are technically interrupt interface deceptive interpreters. They were placed
in the system call category of deceptive interpreters because their mechanism of
operation is specifically aimed at the system call execution path. Deceptive interpretation
that specifically targets the interrupt interface is more difficult because it operates at a
very low level. One potential attack is to tamper with the timer interrupt handler and the
operating system scheduler. Trojan schedulers can pretend to run certain processes
without actually doing so. Services such as intrusion detection systems and anti-virus
programs could be victims of denial of service attacks that are very stealthy. The
processes would still show up in the process list and appear to have CPU time, but their
code would never actually execute. The interrupt interface also mediates communication
with interrupt driven devices. For example, keyboard loggers and network sniffers can
be placed at the interrupt handler level and become very stealthy.

The detection of this category of deceptive interpretation involves verification of the
interrupt handling execution path. Integrity checks need to be performed on the IDT
pointer, the IDT, the interrupt handling routines, and helper routines called by the
interrupt handling routines.
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5.2.1.3. Virtual File System Deceptive Interpreters

Another layer of abstraction is the virtual file system that provides a common software
interface for the underlying physical file system. Deceptive interpretations at the virtual
file system interface can alter the user space view of the file system. This is especially
useful for enforcing storage related policies such as hiding or protecting files.

The top level of the virtual file system interface actually resides on the system call
interface. It implements system call routines such as open, stat, and chmod for
performing file operations. These routines in turn call the specific implementation
routines for the underlying file system. Deceptive interpretation can be done either at the
top level system call routines or at the implementation routines. It is possible to perform
deceptive interpretation on the virtual file system without modification to the top level
system call routines, but it is not possible to do so without affecting the system call
execution path. In this sense, the virtual file system is a subset of the system call
interface. Methods used to detect system call deceptive interpreters would also detect
most, but not all, virtual file system deceptive interpreters. The virtual file system
involves another layer of redirection that is analogous to the system call table on the
system call interface. Inodes associated with each file contain pointers to routines that
implement various file operations. Deceptive interpretation can be performed by
modification of those pointers to point to Trojan routines. This mechanism does not need
to modify any objects in the kernel. Only inodes, which reside in user space, need to be
modified.
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Figure 10: Inode routine redirection

A component of the virtual file system that is commonly targeted by deceptive
interpretation is the procfile system. Files within the proc file system do not physically
exist in storage, but rather are dynamically generated when the file is accessed. These
files provide information to user space processes about hardware status, kernel
configuration, and system operations. This interface is accessed through the /proc and
/dev directories. Different aspects of the system are further divided into subdirectories
such as /proc/interrupts and /proc/sys. Many system audit utilities such as
top and netstat rely on information provided through this interface. Deceptive
interpretation at this layer could provide false information to those utilities and
undermine their results.

Deceptive interpretation using the proc file system was first published in 2001 [26].
The implementation works by hijacking kernel functions that generate the virtual files. It
is able to hide files, processes, and network connections from system utilities that rely on
the /proc directory. The article claims that this method does not affect system calls, but
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